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Abstract The padal-wave method is used for the calculation of the residual electrical resistivity 
caused by dislocations and grain boundaries in various metals. The dislocation core is regarded 
as a resonance scattering line defect containing surplus free volume. Scattering by elastic 
distortions of lhe lanice is neglected. An esdmation of the effective carrier wncenvation in 
bansition metals is performd on the basis of Mott's theory. The proposed model for the 
evolution of the grain-boundary structure with misorientation angle regzds the approach and 
wntluence of the line defects forming the boundary, and results in a decrease of the resonance 
part of the total scattering cross section. The high-angle grain boundaries are assumed to 
consist of cylindrical voids. Taking into account tfle values of the steady Burgers' vectors, quite 
satisfactory agreement with the available experimental data is obtained. 

1. Introduction 

Dislocations and grain boundaries are the most widespread defects in metals, playing a 
leading role in the processes of plastic deformation. The explanation of the high residual 
electrical resistivity of dislocations and grain boundaries, begun a few decades ago, has met 
with certain difficulties until now. The first calculations of the residual resistivity connected 
with dislocations (pd) and grain boundaries (4) in simple metals yielded values 1-2 orders 
of magnitude lower than the experimental ones [1-4]. It has been shown that scattering 
of conduction electrons by long-range elastic strain fields surrounding the dislocation is 
negligible and contributes a few per cent to the general value of the dislocation resistivity 
[2 ,5 ] .  Taking into account the lattice dilatation during plastic deformation and the fact 
that the distortion is concentrated mainly in the dislocation core resulted in the right order 
of magnitude of the residual resistivity produced by dislocations [6]. However, in the 
framework of this model, it was impossible to explain the other experimental facts connected 
with dislocations in metals, such as the contribution of dislocations to the thermoelectric 
power and also the temperature dependence of the dislocation residual resistivity. 

Further progress in investigation of the influence of dislocations on electron- 
transfer properties was associated with the consideration of virtual quasi-stationary states 
17-9.131, the existence of which bad been predicted theoretically [ 101 and later observed 
experimentally [ 1 I]. The resonance scattering of conduction electrons by quasi-stationary 
states lying close to the Fermi surface gave values close to the experimental ones 
for a great number of metals [7]. The best accord was obtained for non-transition 
metals. Representing the grain boundary by a set of resonance scattering dislocations, the 
contribution of the grain boundaries to the residual resistivity was calculated in satisfactom 
agreement with the experiment in order of magnitude for non-transition metals [12]. 
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However, some works [7,10,12] were criticized both for the uncertainty in the nature 
of the disturbance causing the resonance and for the independence of the results on the 
type of dislocations and the value of their Burgers' vector. It must be pointed out that the 
dislocation description of grain boundaries is correct only for low-angle boundaries with 
misorientation angle 0 < 1.5". Io the high-angle range, the dislocation cores convert into 
cylindrical pores [E] ,  whereas in [12] the dislocation description has been used over all 
the range of misorientation. The calculations have ken performed for the particular case 
of columnar structured thin films, when the dislocations constituting the boundary are all 
perpendicular to the current flow and thus make a maximum contribution to the residual 
resistivity. 

In one of the latest works [14] it was suggested that the high electrical resistivity 
of dislocations is due to the Bragg reflection of Fermi electrons from the Brillouin zone 
faces resulting in large-angle scattering. Using a fitting parameter, quite satisfactoly 
agreement with experiment for 16 metals has been obtained. However, the existence of 
such deformations near the dislocation core at which all Fermi surfaces would touch the 
Brillouin zone faces seems doubtful, especially so for monovalent metals. 

Earlier we carried out a calculation of the residual resistivity and additional 
thermoelectric power due to dislocations and grain boundaries in the noble metals with 
allowance for the expansion of the lattice close to the dislocation core as well as the existence 
of quasi-stationary resonance states near to the Fermi energy [9, 161. Satisfactoly agreement 
with the experimental data has been obtained. In this work a more improved model of the 
dislocation core and of the grain-boundary structure is proposed and a broader range of 
metals is considered. Besides noble metals, other monovalent and also more complicated 
polyvalent and transition metals having FCC, BCC and HCP structure are considered. 

The paper is organized in the following way. It consists of two main parts. In the 
first (section 2) we consider the model, present the basic expressions and give the results 
for dislocations in metals. Here the effective carrier concentration is introduced. In the 
second part (section 3) we discuss the grain-boundary model, its change with the angle of 
misorientation, and give the results of the calculation of the residual resistivity due to grain 
boundaries for a range of misorientation angles. In section 4 a discussion of the results and 
comparison with experiment is given. 
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2. The dislocation residual resistivity 

In this paper, calculation of the scattering cross section for line defects is performed in 
the free-electron approximation using the partial-wave method. We take into account only 
scattering by the line defect cores. Scattering of electrons by the elastic strain fields is 
neglected because of their minor influence on the resistivity. The lattice dilatation connected 
with both edge and screw dislocations is concentrated mainly in the area of the core. 
According to the estimates of different authors, the value of the dilatation d V  lies in the 
interval from &; to 4bg per unit length of dislocation (where b~ is the Burgers' vector) 
[17, IS]. This free volume creates a negative surplus charge in comparison with the ideal 
lattice. Side by side with the expanded area there is a compressed region bearing local 
positive charge, which can seize the conduction electrons for a short time and form quasi- 
stationary states. Such states lying close to the Fermi energy have been used in [ I  11 for a 
description of the measured dependence of the dislocation residual resistivity on temperature 
and on the stage of deformation. 
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In the partial-wave method the task of electron scattering reduced to the solution of the 
Schrodinger equation for the axial-cylindrical potential 

Such a form of potential is the simplest that permits one to take into account the main 
features of the perturbation of the crystal lattice in the region of the dislocation core, i.e. the 
repulsion of the electrons by the negative charge and the existence of resonance states in the 
area of positive values of energies. The same form of potential has been obtained in [19] 
for a screw dislocation in potassium within the framework of the pseudopotential concept, 
taking account of the displacement of atoms in the area of the core and the deformation 
of the elastic continuum of the surrounding matrix. The extemal radius of the potential r2 
was taken as equal to the atomic one, and the internal radius rl conditionally was put at 
rl = r2/2,  which did not considerably affect the results. 

In view of the fact that the dislocation length L is much greater than its width 2rz, 
edge effects do not need to be taken into account, and the dislocation may be regarded as 
an infinitely long defect. This is the reawn why only the perpendicular component of the 
wavevector k l  = ksind is changed during the scattering (here k is the wavevector at the 
Fermi level and q5 is the angle between the dislocation axis and the vector k). 

After separation of variables, the radial part of the Schrodinger equation is reduced to 
the Bessel equation 

R"rZ + R'r + [ (k: - % V ( r ) )  r2 - n2] R = 0 
fi 

the solution of which are Bessel functions with arguments Kr, Kgr and RLr in  the regions 
r < r l ,  rl < r < rz and r > rz respectively, where 

K = (k: + 2mV/h2)'I2 

and 

KO = (ki - 2 m V r ~ / h ~ ) " ~ .  

The general solution may be written in the form 

where qn is the phase shift of the asymptotic solution of the nth radial function in the 
perturbed state relative to the unperturbed one. A detailed description of the resonance 
scattering of electrons by a line defect with a potential of form (1) at V = 0 has been 
presented [9]. Here we give only the main results necessary for subsequent analysis and 
formulae differing from the coresponding ones in [9]. 
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The phase shift qn can be represented as a sum of potential a,, and resonance 
components: 

V" = ff. + B" (4) 

where 

and E, and r. are the position and width of the nth resonance level. Demanding continuity 
of the wavefunction and its derivative at r = rl and r = rz we get the expression for the 
potential phase 

a, = tan-'(A./B.) (5) 

where 

A n  = KkL {Ji ( K  r l )  JA h r z )  [ I n  (Korz) Kn (Kor I )  - ( K o ~  I )  K n  ( ~ o r z ) ]  1 
+ KKo{JA(Kri ) J n ( k m ) [ L ( ~ o r I  ) K i  (Korz) - I~(Korz)Kn(Kor~)Il 

+  oh {J. ( K r d J ~ ( h . r d [ I :  (KorI)Kn ( w z )  - In(Korz)K; (~0r1)11  

+ &Jn(w )J , ( k~rz ) [ l~ (Korz )K~(Kor l )  - 2; (Kart )KA (~orz) l I  

and E. is obtained by substitution of the functions J,,(kArz) and JL(k1i-Z) by N.(klrz) and 
NL ( k l r z )  respectively. 

The determination of the resonance phase Bn is reduced to finding the energy eigenvalues 
under the condition of the existence of only a divergent electron wave at the asymptote, 
which corresponds to disintegration of the state. To this end we deal with the complex 
energy EL = E, - i r / 2  and with the complex wavevectors 

f = 2 m E ~ j h '  

i = (fz + 2 m ~ j ~ ~ ) " ~  

i o  = (Ez - 2mVo/h ) z I/Z . 

The precise solutions of equation (2) finite at the origin are given by 

The condition of continuity of the solutions yields the equation 
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Its roots give the energies and widths of the resonance levels Er,, and r, and therefore the 
resonance phase shifts j7.. The localization of the resonance states depends on the depth 
of the potential well V .  We believe that the conduction electrons will interact with the 
resonance levels most intensively when the levels are located close to the Fermi energy 
within the thermal scatter k s T .  That is why the parameter V was fitted in such a manner 
to provide the condition 

IErn - EFI <  BT. (8) 

The calculations show that, if the zero level satisfies the condition, the others are so far 
removed that they may be left out of account So we believe pn = 0 at n z 1. In the 
following we drop the zero index n on Ern and r.. 

The transport cross section for the normal component of the wavevector kL can he 
expressed as a sum of three constituents (resonance R ,  potential P and interference I), each 
of which exhibits a different character of interaction of the electron wave with the defect: 

RI + IL + PL 
where EL = l i2ki/2m and 8, =an -an+,. 

wavevector relative to the dislocation axis is given by 
The total transport cross section averaged over all the possible directions of the 

The residual resistivity due to a dislocation per unit of its density is calculated in the 
relaxation-time approximation using the expression 

(11) 2 m l N d  = hkQ/nee 

where ne is the carrier concentration. 
The height of the potential harrier V, is determined from the Friedel sum rule to provide 

self-consistency of the potential with the screened charge. For line defects the rule can be 
written in the form [2] 

where is the line density of surplus charge along the dislocation axis, expressed by a 
quantity of electron charge. The condition (12) was fulfilled with an accuracy of IO-*; the 
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number n is limited by n = 6. The value of dilatation into the dislocation core is taken 
as dV = bi [IS], from which the value is determined as E = n,dV/R, where n, is the 
number of carriers per atom and S2 is the atomic volume. As the value b g  we take the 
steady Burgers' vector of the full dislocation for the corresponding crystal structure. Thus, 
in FCC metals the value bs is equal to $( I  10) or a J i / 2 ;  in BCC metals, ;( 11 1) or 
in HCP, $ ( I  120) or a (where a is the lattice parameter). 

The value of the wavevector at the Fermi level is calculated on the basis of the 
free-electron approximation k = ( 3 ~ ~ n , / S 1 ) ' / ~ .  As the carrier concentration ne in (11). 
the concentration of those carriers is taken which effectively take part in the processes 
of scattering by defects, i.e. those which are not excluded from the processes by other 
competing scattering mechanisms proceeding with much higher probability. So 
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ne = nf /Q  

where n: is the effective number of carriers per atom. 
Now we shall dwell upon the estimation of the value n: in detail. For monovalent and 

polyvalent non-transition metals we assume n: = nS. For transition metals the evaluation 
of the number n, is made on the basis of Mott's theory, taking into account the features 
of the electron energy smcture of the metals. In these metals there are two partially filled 
overlapping bands (s and d) near the Fermi energy. By reason of the narrowness of the d 
zone and its high occupation, the d holes do not take part in the transfer processes, but they 
are effective scatterers of s electrons because of the high probability of s-d transitions. The 
theory suggests that the number of electrons with spin up (t) in the s zone is equal to the 
number of electrons with spin down ($), and the scattering of s electrons into free s and 
d states occurs without spin overturn. Such an assumption is valid in the lowest order of 
perturbation theory under the condition of neglecting spin-orbit interaction. 

Thus in metals that have one d subband (t) filled completely and the other one (4) 
partially empty, it is natural to assume 1211 that the effective number of current carriers in the 
s zone is n: = nJ2. Thus s electrons with spin down are scattering on the vacant states of 
the d 4 subband and only s electrons with spin up are taking part in the process of scattering 
on defects. Such an approach has been used in [21] for estimating the effective concentration 
of carriers in metals at the end of the transition series (Ni, CO), in the case when the density 
of states at the Fermi level in the d zone is much greater than the respective parameters in 
the s zone, that is Nd >> Ns.  In this case the carrier concentration was determined from 
the average atomic magnetic moment per atom p. So for nickel, which has p = 0.5418 at 
10 (std) electrons per atom, the cwier concentration in the s zone was n6 = 0.54 datom 
and as many holes in the d zone. In cobalf with nine (std) electrons, 1 = 1.72pg and 
n6 = 0.72 datom. 

However, for metals at the beginning and in the middle of the transition series (in the 
present paper thay are Ti, Zr, MO and W) having vacant states in both subzones. it would 
be more correct to admit that the scattering probability of s electrons into vacant states of 
s and d zones is proportional to the density of states in these zones at the Fermi energy. 
Thus taking into account that in the r approximation 

I/% = 1/rsd + I /% 

where r is the relaxation time of the respective process of scattering, and assuming that 
the coupling constants are the same, it appears that the relaxation velocities 5;' and 5;' 

are proportional to the density of states at the Fermi level, Ns and Nd respectively. So 
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the total number of s electrons n, with spin up and down will be divided into two parts 
n, = n,d + nss in proportion nSd/nSS = Nd/N,,  from which only nss will participate in 
the processes of scattering on lattice defects. That is, the effective number of carriers is 
n: = nss. The values n, and n: used here are given in table 1 for the metals considered 
with an indication of the lattice constants, the crystal structures and the group numbers in 
the periodic system. The quantities n, for metals Be, Zn, Cd, AI, Ti, 21, MO, W and Pd 
are taken from the zonestructure calculation, the results of which are generalized in [7]. 
The atomic magnetic moment of Fe was taken equal to f i  = 2 . 2 2 ~ ~ .  In accordance with 
Hund's rule one d subband (t) is assumed to be filled completely, so that the magnetic 
moment of Fe determined the number of d holes in the other d subband (1). The effective 
number of carriers n: for Ti, Zr, MO and W was estimated by using experimental data on 
electron specific heat, which were proportional to the density of electron states on the Fermi 
level as a first approximation. In conformity with the data listed in 1221, the specific heat 
y for Ti, Zr, MO and M respectively is equal to 8.1 x 5.0 x IO4 and 
2.68 x cal mo1-l K-' (this is the arithmetic mean value from the experimental row 
cited in [ZZ]). If these quantities are divided by the value ycU = 1.66 x cal mol-' K-2, 
we obtain the corresponding density of electron states at the Fermi energy NS+d in units of 
the density of states of copper. It is possible to estimate the density of states in the s zone for 
these metals relative to copper on the basis of the free-electron model assuming Ns - n;l3. 
In such a way the density of states in the s zone (N,) constitutes correspondingly for Ti, Zr, 
MO and W values 0.40,0.40, 0.76 and 0.62. Hence one can evaluate the quantities nS6 = n; 
by the expression nss = Nsn,/Nd+,; these values are presented in table 1. 

6.9 x 

Table 1. Parameten of crystalline stmctwe and number of &en per atom 

Lattice constants 

~ 

Na 
K 

C" 

Au 

Be 

zn 
Cd 

AI 

Ti 
zr 

MO 
W 

Fe 
CO 
Ni 
Pd 
Pi 

Ag 

Metal Group Smcture a (A) c (A) n, n: 
IA BCC 4.23 1 I 
IA 

LB 
IB 
IB 

IIA 

IIB 
LIB 

IIIB 

IVA 
IVA 

VIA 
VIA 

vu1 
VI11 
VI11 
vu1 
vnr 

BCC 5.23 

FCC 3.62 
FCC 4.09 
FCC 4.08 

HCP 2.29 

HCP 2.66 
HCP 2.98 

Fcc 4.05 

HCP 2.95 
HCP 3.23 

Bn: 3.15 
BCC 3.16 

B c c  2.81 
HCP 2.51 
FCC 3.52 
FCC 3.89 
FCC 3.92 

3.58 

4.95 
5.62 

4.69 
5.15 

4.07 

I 1 

I I 
I I 
I I 

0.032 0.032 

0.09 0.09 
0.095 0.095 

1 1 

0.065 0.0054 
0.065 0,0064 

0.44 0.112 
0.24 0.097 

0.22 0.11 
0.72 0.36 
0.54 0.21 
0.55 0.275 
0.42 0.21 
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The results of calculations of the residual resistivity due to dislocations per unit density 
( p d / N . )  are listed in table 2. The calculated parameters of the potential (I), V and VO, are 
represented there as well. For comparison we represent here the results of previous works 
and also the available experimental data. 

Table 2. Calculated parameters of the scattering potential and dislocation spcific resistivity. 

W / N ~  ( 1 0 - l ~  n cm') 

~ 

Na 

K 

C" 

Ag 
AU 

Be 

Zn 
cd 

AI 

Ti 
zr 

MO 

W 

Fe 
CO 
Ni 

Pd 
R 

Previous work  
Experimental 

Metal Vo V This work 1201 [I41 dam 

8.1 3.0 6.9 

7.1 3.6 11.3 (2% 1191 5.1 4[31] 

21.4 10.3 1.9 

16.9 8.1 2.7 

16.6 8.0 2.6 

50.7 27.1 21.7 

30.0 18.3 15.8 
23.8 14.5 21.5 

17.2 8.3 2.7 

25.7 15.0 301.4 
21.4 12.7 330.2 

20.0 12.9 17.3 

22.4 14.8 17.8 

1.6 * 0.2 171 
1.3 0.78 / 1.8-2.3 135.301 

11.7 I361 

1.9 

I .9 1.2 2.61311 

28 22 34 [7] 

25 7.3 24 171 

I .8 2 0.1 [38] 
1.8 {3.2 [311 

29 100 171 
40 15 - 100 I311 

19.1 12.5 12.6 
22.9 12.9 4.5 

23.3 14.3 5.4 

19.1 11.6 7.2 
19.5 12.4 9.0 

I .9 1.9 10*4[7] 

4 2.5 - 9  [311 

3. The grain-boundary residual resistivity 

The structure of low-angle grain boundaries, that is, boundaries with an angle of 
misorientation 0 < 15". is sufficiently well understood now. To represent a simple 
symmetrical tilt boundary in a cubic lattice, one set of edge didocations is sufficient, with 
Burgers' vector bB a distance D apart 

D = bs/[Zsin(0/2)]. (13) 
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In the general case, an asymmetrical low-angle boundary having both tilt and twist 
components can be made up by three independent sets of dislocations with non-coplanar 
Burgers' vectors. In this paper, for the purpose of simplicity, we shall deal with symmetrical 
tilt grain boundaries around the directions (100) for FCC, (110) for BCC and (0001) for HCP 
structures. In HCP crystals the distance between line defects can be expressed as 

D = b g  sin(n/3 - 0/2)/[2sin(8/2)] 

taking into account that a slip happens most often along the most packed planes (0001j. The 
value bs is assumed to be equal to a a / 2 .  a 3 1 2  and a for FCC, BCC and HCP structures 
respectively. The dislocation density into grain boundaries increases with the misorientation 
angle, and at 8 > 20" the dislocation concept cannot be used. There are quite a number of 
high-angle grain-boundary models, and reviews can be found in [23] and [24]. They are the 
partial dislocation model, the bubble raft model, the dislocation core model, the disclination 
model, the island model, the structural unit model and others. The general feature of these 
theories is the representation of the fact that the high-angle boundary is more porous and 
friable in comparison with the low-angle one. However, it remains unclear what will happen 
after the dislocations draw together to a distance of a few atoms apart, when they begin to 
interact with each other. The model of the transformation of grain-boundary structure with 
misorientation angle proposed here allows one to realize a gradual transfer from resonance 
scattering dislocations to potential scattering cylindrical voids. It may be regarded as a 
further development of the dislocation core model first put forward in [25]. 

The model proposed here is shown schematically in figure 1. In the low-angle range 
(area I) the grain boundary is presented by dislocations with steady Burgers' vector be. As 
the misorientation angle increases, the separation between the dislocations decreases. When 
the separation becomes less than a critical value Dc, the dislocations start agglomerating into 
superdislocations with Burgers' vector b (area ll). The critical distance 0, may be connected 
with the critical angle 0, using (13) or (14). In accordance with [261 the confluence of 
head dislocations squeezed by external stress becomes energy advantageous if the distance 
between them is equal to D c (7-1O)bg. In this work the critical distance is D, = 768, the 
corresponding critical angle 0, in cubic and hexagonal structures is 8" and 7" respectively. 
The process of 'dislocation confluence will be irregular in real crystals; nevertheless, one 
can speak about enhancement of average Burgers' vector of superdislocations b from the 
beginning of the process. In cubic crystals let the value b change with 0 by the law 

b = 2 0 ,  sin(8/2) (15) 

and in HCP crystals 

b = 20,[2sin(b/2)/sin(rr/3 - 8/2)]. (W 

As shown in [27] this process is accompanied by a decrease in the amount of resonance 
scattering in the total cross section. At an angle 8" the resonance part of the cross section 

QR = i l z ( s i n @ ) R ~ ( @ ) d @  

will be far less than the total value Q and it may be neglected. From this moment, the grain 
boundary is regarded as a high-angle one in our model (the area III in figure 1). Let the angle 
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I 

Q 
I Q 
Q I 

Q I 

I 

0 
0 
0 
0 

I I 
4 E' 0 

Figure 1. The scheme of changing of the grain-boundary sLNcture with the misorientation angle: 
I, low-angle area. 11, transition area, Ill, high-angle area D. and 8,. the critical distance and the 
corresponding critical angle stvting from the dislocations agglomerate into superdislocations. 
e,. limiting angle I which the fraction Q n / Q  < 0.01. 

B* be called a limiting one. The value 8' is the angle at which the fraction &/Q < 0.01. 
Thus, within the large-angle area the grain boundary turned out to consist of cylindrical 
voids. A similar picture follows from [281, in which it was shown that enhancement of 
misorientation is accompanied by an intense growth of the grain-boundary core width until 
high angle, where the concept of dislocation fails. 

We believe that the structure of the high-angle boundary and the parameters of the 
line defect cores inside it do not change practically with the misorientation angle. It is 
confirmed by the angle independence (or insignificant dependence) of the interfacial energy 
in the high-angle area if there are no special misorientations. Special grain boundaries 
with high density of coincident sites are characterized by sharp cusps in the energy-angle 
dependence. Observation of the misfit dislocations in special boundaries indicates that their 
structure is close to that of the low-angle ones. Thus, the model proposed here can be used 
for consideration of grain-boundary evolution between two adjacent special misorientations. 

In this work we neglect the interaction of line defects in the boundary. This is justified 
by the fact that the electrostatic interaction, because of screening effects, does not influence 
very much the potentials of neighbouring defects more than a few atomic distances away, 
and the interaction through the long-range strain fields contributes to the resistivity about 
two orders of magnitude less compared with that of the dislocation core [29]. 

Thus, knowing the resistivity of line defects constituting the boundary pL/NL 
(dislocations, superdislocations or cylindrical voids) and the distances between them D, one 
can calculate the grain-boundary resistivity per unit area in unit volume of a polycrystalline 
material 

where NL is the line defect density. For cubic structures 

P J N ,  = ~ P L S ~ ~ ( ~ I ~ ) / N L ~  
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where 

8 < e, 
b = 0, sin(O/2) e , < e < e *  I bB Dc sin(e*/2) 8" < 8 < 8J2. 

For hexagonal close-packed crystals analogous expressions are derived from (14) and (1%). 
The angle 8, is connected with the periodicity of the structure. So 0, = 1112 for cubic 
structures and 8, = 1113 for HCP ones. The maximal misorientation angle is thus 8,/2. 

The residual resistivity per unit density of line defects ~ L / N L  is defined by the expression 
(1 1). The outside radius of the potential is taken as rz = b/&. As a magnitude of the 
line charge density within the boundary, the value 4 = n,b2/!2 is accepted. 

The calculated values of the residual resistivity due to the gain boundary for different 
ranges of misorientation are shown in table 3. The low-angle resistivity pL/N,  is averaged 
over the angle interval from 0 to e"; the general mean value & / N ,  is taken as the average 
weighted over grain misorientation from 0 to 8,. For the purpose of comparison the data of 
the previous calculations [ 121 and the available experimental results are also represented in 
table 3. 

Table 3. Calculated grain-boundary specific resistivity for different ranges of misorientation. 

p , /N ,  (IO-'' Q cm2) 

P i / %  P,hlNz This Previous Experimental 
Metal (IO-" Sl cm2) Sl cm2) work WO& [I21 data 

Na 1.4 6.4 5.0 
K 2.2 10.9 8.4 

cu 0.5 2.5 2.1 2.2 1.8-3.1 [I21 
Ag 0.1 3.3 2.1 
AU 0.7 3.2 2.6 2.8 3.5 [I21 

Be 9.4 38.1 27.8 

Zn 5.8 28.3 19.5 21.1 1&55 [34] 
Cd 1.0 34.1 23.5 32.6 15.&19.1 1341 

AI 0.1 3, I 2.45 * 0.1 [39] 
1.3-2.5 [34] 2.6 2.1 

li 96.1 432.0 309.9 
ZI 91.0 453.3 321.0 

MO 5.6 28.5 22.0 18.0 12-22 [40] 
W 5.6 21.2 21.2 22.0 20 [I21 

Fe 4.1 20.4 15.8 6.2 5 6 -  260 r41v 
CO 1.8 
Ni I .5 

8.1 
7.6 

. .  
6.0 2.4 5 1121 
6.2 1.9 5.9-14 I121 

Pd I .9 9.2 7.6 
pt 2.3 11.0 9. I 

Obtained in [341 by recounting the row of points of figure 2 from [411. 
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4. Discussion 

The results of calculated dislocation residual resistivity presented in table 2 permit one to 
make a conclusion about the good overall agreement between theory and experiment. The 
exception is potassium, for which the only estimation of dislocation specific resistivity is 
known on the basis of the strain dependence of the resistivity. It was made more than 30 
years ago and has to be re-examined. Experimental data for AI and Cu are the most reliable. 
A sufficient number of measurements of electrical resistivity caused by dislocations for these 
metals have been carried out at different temperatures and by various methods of evaluation 
of dislocation density. They have been done on both polycrystalline and monocrystalline 
specimens with diverse degree of deformation. Reasons for the discrepancy in the results 
have been discussed. It has been established that the measurements performed at 4.2 K 
and with high density of dislocations (Nd - lo9 to 10" are most trustworthy. 
In that case electron-dislocation scattering is predominant and scattering of electrons by 
phonons and impurities may be neglected. Such a situation arises if Nd > lo9 cm-' at 
T = 4.2 K and if Nd > 10" at T = 80 K 1421. When the dislocation density is not 
high enough, the measurements result in overestimated values of pd/Nd, possibly by several 
times. It is apparent from table 2 that our results agree well with available experimental data, 
especially for those metals whose experimental values one may believe to be most reliable 
(Cu, Ag, Au, AI, MO, W). The experimental estimates of dislocation residual resistivity 
for K, Ti, Zr, Fe, Ni and Pt ought to be considered to be less reliable in our opinion, 
because they are unique as a rule and were carried out on specimens with comparatively low 
dislocation density. There are far fewer experimental results for grain boundaries than for 
dislocations. This is connected with the great complication of such measurements, because 
in bulk samples the effect is too small, and in film samples it is masked by size and surface 
effects. However, as follows from table 3, there is quite satisfactory agreement between the 
calculated quantities pz/Ng and experimental data available in the literature. There is less 
satisfactory agreement for iron. Partly, this may be accounted for by the fact that iron is a 
most intricate metal with respect to electron-transfer properties, and it has complicated phase 
composition that is very sensitive to impurity availability. The phase transformation there 
happens in the same temperature interval as the processes of recrystallization connected 
with grain-boundary annealing. There is only a single measurement [41J of the contribution 
to electrical resistivity caused by grain boundaries in Fe, where a great scatter of quantities 
pg  IN, has been obtained. 

Nevertheless, we may conclude that the proposed dislocation model taking account of 
the effective number of carriers is the first that allows one to account for the order of 
dislocation residual resistivity values in transition metals such as Ti, Zr, MO, W, Fe and Pt 
and to obtain quite good accordance with experiment for monovalent and polyvalent non- 
transition metals. Results for grain boundaries presented here agree with experimental data 
as well as in [12], but the grain-boundary model presented here has dislocation building only 
in the low-angle range and converts into cylindrical voids with increase of the misorientation 
angle. It is more realistic in our opinion. 

A S Karolik and A A Luhvich 

5. Summary and conclusions 

The results of the calculation of residual resistivity due to dislocations and grain boundaries, 
represented in tables 2 and 3, show a quite satisfactory accordance with the available 
experimental data. Thus, the model of defects proposed here taking into account the lattice 



Calculation of elecfrical resistivity 885 

dilatation in the dislocation core, the effective number of carriers and also the existence 
of resonance electron states near the Fermi energy allowed us to explain the experimental 
results for a broad range of metals including the transition ones. 

Further progress in this direction may be achieved by defining more precisely the 
effective carrier concentration and the resonance state parameters of the lattice and grain- 
boundary dislocations on the one hand, and, on the other hand, by means of performing 
reliably precise measurements of the contribution of these defects to the electrical resistivity 
of different metals. 
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